Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Public Health ; 9: 709369, 2021.
Article in English | MEDLINE | ID: covidwho-1348577

ABSTRACT

A novel coronavirus emerged in December of 2019 (COVID-19), causing a pandemic that inflicted unprecedented public health and economic burden in all nooks and corners of the world. Although the control of COVID-19 largely focused on the use of basic public health measures (primarily based on using non-pharmaceutical interventions, such as quarantine, isolation, social-distancing, face mask usage, and community lockdowns) initially, three safe and highly-effective vaccines (by AstraZeneca Inc., Moderna Inc., and Pfizer Inc.), were approved for use in humans in December 2020. We present a new mathematical model for assessing the population-level impact of these vaccines on curtailing the burden of COVID-19. The model stratifies the total population into two subgroups, based on whether or not they habitually wear face mask in public. The resulting multigroup model, which takes the form of a deterministic system of nonlinear differential equations, is fitted and parameterized using COVID-19 cumulative mortality data for the third wave of the COVID-19 pandemic in the United States. Conditions for the asymptotic stability of the associated disease-free equilibrium, as well as an expression for the vaccine-derived herd immunity threshold, are rigorously derived. Numerical simulations of the model show that the size of the initial proportion of individuals in the mask-wearing group, together with positive change in behavior from the non-mask wearing group (as well as those in the mask-wearing group, who do not abandon their mask-wearing habit) play a crucial role in effectively curtailing the COVID-19 pandemic in the United States. This study further shows that the prospect of achieving vaccine-derived herd immunity (required for COVID-19 elimination) in the U.S., using the Pfizer or Moderna vaccine, is quite promising. In particular, our study shows that herd immunity can be achieved in the U.S. if at least 60% of the population are fully vaccinated. Furthermore, the prospect of eliminating the pandemic in the U.S. in the year 2021 is significantly enhanced if the vaccination program is complemented with non-pharmaceutical interventions at moderate increased levels of compliance (in relation to their baseline compliance). The study further suggests that, while the waning of natural and vaccine-derived immunity against COVID-19 induces only a marginal increase in the burden and projected time-to-elimination of the pandemic, adding the impacts of therapeutic benefits of the vaccines into the model resulted in a dramatic reduction in the burden and time-to-elimination of the pandemic.


Subject(s)
COVID-19 , Vaccines , Communicable Disease Control , Humans , Immunity, Herd , Pandemics , SARS-CoV-2 , United States/epidemiology
3.
BMC Infect Dis ; 20(1): 859, 2020 Nov 19.
Article in English | MEDLINE | ID: covidwho-934257

ABSTRACT

BACKGROUND: Efficient control and management in the ongoing COVID-19 pandemic needs to carefully balance economical and realizable interventions. Simulation models can play a cardinal role in forecasting possible scenarios to sustain decision support. METHODS: We present a sophisticated extension of a classical SEIR model. The simulation tool CovidSIM Version 1.0 is an openly accessible web interface to interactively conduct simulations of this model. The simulation tool is used to assess the effects of various interventions, assuming parameters that reflect the situation in Austria as an example. RESULTS: Strict contact reduction including isolation of infected persons in quarantine wards and at home can substantially delay the peak of the epidemic. Home isolation of infected individuals effectively reduces the height of the peak. Contact reduction by social distancing, e.g., by curfews, sanitary behavior, etc. are also effective in delaying the epidemic peak. CONCLUSIONS: Contact-reducing mechanisms are efficient to delay the peak of the epidemic. They might also be effective in decreasing the peak number of infections depending on seasonal fluctuations in the transmissibility of the disease.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , User-Computer Interface , Austria/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , Computer Simulation , Contact Tracing , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Quarantine , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL